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The Hippo pathway in organ size control, tissue 
regeneration and stem cell self-renewal
Bin Zhao, Karen Tumaneng and Kun-Liang Guan

Precise control of organ size is crucial during animal development and regeneration. In Drosophila and mammals, studies over the 
past decade have uncovered a critical role for the Hippo tumour-suppressor pathway in the regulation of organ size. Dysregulation 
of this pathway leads to massive overgrowth of tissue. The Hippo signalling pathway is highly conserved and limits organ size by 
phosphorylating and inhibiting the transcription co-activators YAP and TAZ in mammals and Yki in Drosophila, key regulators of 
proliferation and apoptosis. The Hippo pathway also has a critical role in the self-renewal and expansion of stem cells and tissue-
specific progenitor cells, and has important functions in tissue regeneration. Emerging evidence shows that the Hippo pathway 
is regulated by cell polarity, cell adhesion and cell junction proteins. In this review we summarize current understanding of the 
composition and regulation of the Hippo pathway, and discuss how cell polarity and cell adhesion proteins inform the role of this 
pathway in organ size control and regeneration. 

Organ size regulation is a highly coordinated process involving complex 
mechanisms in response to physiological cues. On the organismal level, 
circulating factors such as hormones and insulin-like growth factors 
(IGF) play important roles in promoting organ size1. In contrast, physi-
ological perturbations, such as prolonged starvation, cause profound 
reduction of organ size1. Additionally, an intrinsic mechanism limits 
organ size, which was first demonstrated in salamander limbs by classi-
cal transplantation experiments1. The underlying mechanism of organ-
autonomous size determination remained largely unknown until the past 
decade. Extensive research led to the identification of the Hippo tumour-
suppressor pathway as a key regulator of organ size in Drosophila and 
mammals2. It is also known that mutations of genes that are involved in 
patterning, cell polarity and cell adhesion cause marked alternations of 
organ size3. Thus, the recent finding that the Hippo pathway is regulated 
by cell polarity and cell adhesion proteins is a promising basis for the 
potential crosstalk of the Hippo pathway and cell polarity proteins in the 
regulation of organ size4. Several studies have also demonstrated impor-
tant roles for the Hippo pathway in stem cell/progenitor cell expansion 
and tissue regeneration5–13. These findings will be discussed here. 

The Hippo pathway in Drosophila
In Drosophila, the first core components of the Hippo pathway to be 
identified, using genetic mosaic screens, were the tumour-suppressor 
genes warts (wts)14,15, hippo (hpo)16–20 and salvador (sav)21,22. These genes 
belong to the hyperplastic group of Drosophila tumour-suppressors. 
Mutation of these genes results in robust tissue overgrowth without 
alteration of cell fate determination or cell polarity. Biochemical stud-
ies revealed that Hpo directly interacts with Sav to phosphorylate and 

activate the complex formed by Wts and another core Hippo pathway 
protein, Mats16,23 (Fig. 1a). The kinase activity of Hpo is antagonized 
by a PP2A phosphatase complex, dSTRIPAK24. The Hippo pathway is 
known to limit organ size partly by transcriptional regulation of cyclin 
E and diap1 (refs 16,17,20,21,23), suggesting the existence of a tran-
scriptional regulator as a downstream effector of the pathway. By per-
forming a yeast two-hybrid screen using Wts as bait, the transcription 
co-activator Yorkie (Yki) was identified as a potent effector of the Hippo 
pathway25. Subsequent biochemical studies showed that Wts directly 
phosphorylates and inhibits Yki26. 

Research in the past years has uncovered many proteins that act 
upstream in the Drosophila Hippo pathway. Two apical cytoskeleton-
binding proteins, Merlin (Mer) and Expanded (Ex)27, and their interact-
ing protein Kibra28–30, were found to activate the Hippo pathway. The Fat 
protocadherin, a cell-surface molecule, was also identified as an upstream 
regulator of the Hippo pathway31–35. Fat activity is regulated by binding 
to another protocadherin, Dachsous (Ds)36, and is modulated by several 
proteins, such as the casein kinase Discs overgrown (Dco)37,38, the Golgi-
resident kinase Four-jointed (Fj)39–41 and the Fat/Ds-interacting protein 
Lowfat (Lft)42. Fat/Hippo pathway activity may also be influenced by 
Decapentaplegic (Dpp) and Wingless (Wg) morphogen gradients40,41,43, 
which affect the expression of Fj and Ds. It has been proposed that Fat 
activates the Hippo pathway by regulating the protein level and localiza-
tion of the protein Ex31–33,35. Another study suggests that Fat may control 
the abundance of Wts through Dachs34,44. Recently, dJub, a LIM-domain-
containing protein that physically interacts with Wts and Sav, was shown 
to negatively regulate Hippo signalling, although the detailed mecha-
nism has not been delineated45. A number of proteins that determine cell 
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polarity were also found to regulate the Hippo pathway. These include 
the Scribble (Scrib)–Discs large (Dlg)–Lethal giant larvae (Lgl) complex, 
atypical protein kinase C (aPKC) and Crumbs (Crb)46–49, indicating a role 
of cell polarity in the regulation of Hippo signalling.

The Hippo pathway in mammals
The core components and downstream effectors of the Drosophila Hippo 
pathway are highly conserved in mammals: Mst1/2 (homologues of 
Hpo), Sav1 (Sav homologue), Lats1/2 (Wts homologues), MOBKL1A 
and MOBKL1B (collectively referred to as Mob1; homologues of Mats), 
and YAP and its paralogue TAZ (also called WWTR1; homologues of 
Yki) (Fig. 1b). Expression of human YAP, Lats1, Mst2 and Mob1 can 
rescue the phenotypes of their corresponding Drosophila mutants 
in vivo16,23,25,50. The core components Mst1/2 are pro-apoptotic kinases 
that are activated by caspase cleavage under apoptotic stress51. Sav1 inter-
acts with Mst1/2 through the SARAH domains present in both Sav1 and 
Mst1/2 (ref. 52). Although Sav1 has been shown to activate Mst1/2, the 
underlying mechanism is unclear, but might involve regulation of Mst1 
nuclear translocation53. Mst1/2 is also activated by binding to Ras asso-
ciation domain family (RASSF) proteins54, possibly owing to alteration 
of Mst1/2 subcellular localization55. In Drosophila, however, dRASSF 
inhibits Hpo possibly through competition with Sav for Hpo binding56 
and through recruitment of the dSTRIPAK–PP2A complex24. Activation 
of Mst1/2 leads to phosphorylation and activation of their direct sub-
strates, Lats1/2 (ref. 57). Mob1, which forms a complex with Lats1/2, is 
also phosphorylated by Mst1/2, resulting in an enhanced Lats1/2–Mob1 
interaction58. Activated Lats1/2 in turn phosphorylate and inhibit YAP/
TAZ transcription co-activators26,59–62. 

Functions of the Hippo pathway in organ size determination and 
tumour suppression have been confirmed in genetically engineered 
mouse models. For instance, liver-specific overexpression of YAP results 
in enlarged livers that return to their normal size after cessation of YAP 
expression12,26. However, sustained YAP overexpression leads to tumour 
formation26. Genomic amplification of YAP is also observed in human 

cancers and a mouse model of breast cancer63,64. Furthermore, elevated 
YAP protein levels and nuclear localization have been observed in multi-
ple human cancers59,63,65, and the alterations of YAP may have prognostic 
value for certain human cancers66. Overexpression of TAZ, the paralogue 
of YAP, has been noted in human breast cancer samples and non-small-
cell lung-cancer cell lines67,68. Ablation of the Hippo pathway components 
Mer and Sav and double knockout of Mst1/2 in mice also result in liver 
enlargement and tumour formation69–74. Remarkably, loss of one or both 
copies of YAP can suppress liver expansion and tumorigenesis induced 
by Mer deficiency69. Aberrant Mst1/2 and Lats1/2 expression and Lats2, 
Sav1 and Mob1 mutation were also observed in human cancers or cancer 
cell lines2. Together, these studies highlight a significant role of the Hippo 
pathway in organ size regulation and tumorigenesis. 

Mechanisms of YAP/TAZ/Yki inhibition
Activation of the Hippo pathway leads to phosphorylation and inhibi-
tion of YAP, TAZ and Yki transcription co-activators. In mammals, YAP 
and TAZ are phosphorylated by Lats1/2 in vitro and in vivo59,60,75. The 
mechanism of inhibition by Hippo signalling involves phosphorylation 
of Ser 127 in YAP or the corresponding sites in TAZ and Yki, which 
promotes 14-3-3 binding and subsequent cytoplasmic sequestration 
and inactivation26,59,60,62,76 (Fig. 2a).  Indeed, mutation of Ser 127 and 
disruption of 14-3-3 binding activate YAP59, confirming the inhibitory 
nature of this phosphorylation. In Drosophila, Yki phosphorylation on 
two other sites by Wts similarly results in Yki inhibition, although the 
mechanism is yet to be determined77. 

Phosphorylation of YAP can also induce its degradation. Lats1/2 phos-
phorylates YAP at Ser 381, which primes YAP for subsequent phospho-
rylation by another kinase, possibly casein kinase 1 (CK1δ/ε), activating a 
phosphorylation-dependent degradation motif termed a phosphodegron. 
Subsequently, the E3 ubiquitin ligase SCFβ–TRCP is recruited to YAP, 
leading to its polyubiquitylation and degradation75 (Fig. 2c). Consistently, 
decreased YAP phosphorylation in sparsely cultured NIH-3T3 cells, as 
well as in Mst1/2-deficient mouse liver, correlates with increased YAP 
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Figure 1 The Hippo pathway in Drosophila and mammals. Corresponding proteins in Drosophila (a) and mammals (b) are indicated by matching colours. 
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protein levels73,75. This mechanism is conserved in TAZ but not in Yki78, 
which lacks a residue equivalent to Ser 381. 

YAP, TAZ and Yki can also be inhibited through protein–protein 
interactions that result in their cytoplasmic sequestration (Fig. 2b). Yki 
contains two WW domains that can interact with PPXY motifs present 
in Mop79 and the Hippo pathway components Ex, Wts and Hpo80,81. 
Recently, YAP/TAZ and angiomotin (AMOT) family proteins were 
shown to interact82–85, resulting in YAP/TAZ localization to tight junc-
tions and inhibition through phosphorylation-dependent and -inde-
pendent mechanisms82. In addition, YAP and TAZ interact with another 
tight junction protein ZO-2, which was reported to increase nuclear 
localization of YAP and tight-junction localization of TAZ86,87. It will be 
important to investigate the relationship between phosphorylation and 
these physical interactions in YAP regulation, and whether disruption 
of these interactions alters organ growth. 

Transcriptional regulation of Hippo pathway target genes by YAP, 
TAZ and Yki
The TEAD family transcription factors were found to be critical partners 
of YAP and TAZ in the regulation of gene expression (the Drosophila 
TEAD homologue Scalloped (Sd) is partner of Yki) 88–92. Knockdown 
of TEADs or disruption of the YAP–TEAD interaction abolishes YAP-
dependent gene transcription and largely diminishes YAP-induced cell 
proliferation, oncogenic transformation and the epithelial-to-mesen-
chymal transition (EMT)88. In Drosophila, Sd was shown to genetically 
interact with Yki and to be required for Yki-induced target gene expres-
sion in vivo88,89,91,92. Intriguingly, a mutation of TEAD1 Tyr 406, which 
forms a hydrogen bond with YAP, results in loss of interaction with 
YAP and leads to the human genetic disease Sveinsson’s chorioretinal 
atrophy93–96. Precise regulation of YAP–TEAD interaction is therefore 
important in maintaining normal physiology. 

Several direct target genes of YAP–/TAZ–TEAD and Yki–Sd have 
been identified, including CTGF and Cyr61 in mammalian cells88,97, 
and diap1 and dMyc in Drosophila89,91,98,99. CTGF was shown to have 
an important role in YAP-induced proliferation and anchorage-inde-
pendent growth88.  In Drosophila, diap1 is essential for Yki-induced 
overgrowth, but is not sufficient to explain all Yki phenotypes. Recently, 
Yki–Sd was shown to induce transcription of dMyc, a potent promoter of 
ribosome biogenesis and cell growth98,99. dMyc expression also mediates 
a cell phenomenon induced by imbalance of Hippo pathway activity, 
referred to as cell competition — wherein the contact between fast- and 
slow-growing cells in genetic mosaics favours the positive selection and 
clonal expansion of fast-dividing cells at the expense of slow-dividing 
cells98,99. YAP also induces Myc in transgenic mouse liver26, although the 
mechanism remains to be investigated. 

Despite a major role for TEADs in YAP/TAZ function, other tran-
scription factors containing PPXY motifs are known to interact with 
the WW domains of YAP/TAZ. These include Smad1, RUNX, ErbB4 
and p73 for YAP100–104, and RUNX, PPARγ, Pax3, TBX5 and TTF-1 for 
TAZ105–109. The interaction of YAP with Smad1 is believed to be 
important for BMP-mediated maintenance of pluripotency of mouse 
embryonic stem cells104. YAP and TAZ also bind Smad2/3 through the 
coiled-coil region, and this interaction is believed to dictate the subcel-
lular localization of Smad2/3 (refs 85,110). YAP also interacts with p73, 
a p53 family pro-apoptotic transcription factor, to induce expression of 
genes such as Bax, puma and PML111. However, there are contradictory 

reports on the role of the Hippo pathway in activating112 or inhibiting61 
this activity. Recently, YAP was also shown to interact with β-catenin 
and induce expression of canonical Wnt target genes such as Sox2 and 
Snai2 in mouse heart tissue113.

bantam microRNA is a target gene of the Hippo pathway and pro-
motes cell survival and proliferation114,115. Homothorax (Hth) and 
Teashirt (Tsh) are two transcription factors mediating bantam expres-
sion anterior to the morphogenetic furrow116. In addition, the expres-
sion of bantam is also directly induced by a transcriptional complex 
formed by Yki and Mad, an effector of the Drosophila Dpp signalling 
pathway117. The existence of a bantam counterpart and the functions of 
Hth and Tsh homologues in the Hippo pathway in mammals remain to 
be investigated. 

YAP, TAZ and Yki also induce many other genes directly or indirectly. 
In Drosophila, Yki induces: cycE (ref. 21) and E2F1 (ref. 92), which may 
be involved in cell-autonomous regulation of cell proliferation; the EGFR 
(epidermal growth factor receptor) ligands Vein, Keren and Spitz11,118 
and the Jak–Stat pathway ligands Unpaired1/2/3 (Upd1/2/3)8–11, which 
might mediate non-cell-autonomous functions of the Hippo pathway; 
and the Hippo pathway genes Ex, Kibra, Crb, and Fj27,29,34,119, which may 
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constitute a signal feedback loop. In mammals, YAP and TAZ also induce 
the expression of AREG118 and FGF1 (ref. 60), which may also mediate 
non-cell-autonomous functions of the Hippo pathway. However, the 
mechanisms underlying the induction of these genes, including the 
responsible transcription factors, are mostly unclear.

Regulation of the Hippo pathway by cell polarity and cell 
adhesion complexes
In Drosophila, mutations of several genes that are involved in cell polar-
ity and cell junction lead to massive overgrowth. The Dlg–Lgl–Scrib 
protein complex localizes to the basal–lateral membrane of epithelial 
cells, where it is required for the lateral exclusion of apical proteins, 
including the Par3–Par6–aPKC complex and the Crb–Stardust (Sdt)–
PATJ complex. Interestingly, Lgl mutations lead to nuclear translocation 
of Yki and upregulation of Hippo pathway target genes in Drosophila 
epithelium47. Expression of dominant-negative aPKC rescued the tissue 
overgrowth in Lgl-mutant tissues47. In zebrafish, Scrib was shown to 
interact genetically with and suppress the activity of the YAP homologue 
during embryonic kidney development120. The tumour-suppressor func-
tion of the Dlg–Lgl–Scrib complex is possibly conserved in mammals, 

as depletion of Scrib in mammary epithelium results in disruption of 
apoptosis inhibition by cell polarity, and induction of dysplasia in vivo 
that progresses to tumours after long latency121. It would be interest-
ing to determine whether the mammalian Hippo pathway mediates the 
tumour-suppressor function of the Dlg–Lgl–Scrib complex. 

Crb is another cell polarity protein that regulates the Drosophila 
Hippo pathway46,48,49. The intracellular domain of Crb contains a jux-
tamembrane FERM-binding motif (FBM) and a carboxy-terminal PDZ-
binding motif (PBM). The PBM is important for polarity formation122, 
whereas the FBM regulates Hippo-pathway-dependent proliferation and 
apoptosis by promoting apical localization of the upstream component 
Ex46,48,49. Thus, Crb regulates cell polarity and tissue growth through 
distinct mechanisms. In addition, it seems that the functions of the Dlg–
Lgl–Scrib complex in cell polarity and tissue growth are also separa-
ble47,123. It is therefore important to determine whether, and how, the two 
functions of these proteins are coupled to regulate tissue homeostasis.

In mammalian cells, Hippo pathway activation is triggered in part by 
cell–cell contact. In tissue culture, high cell density induces YAP phos-
phorylation and cytoplasmic translocation59. And in mouse blastocysts, 
YAP is nuclear in outer layer cells, and cytoplasmic in the inner blas-
tocyst layer cells124. Consistently, it has been observed that disruption 
of cell–cell junctions in epithelium results in the nuclear localization of 
YAP and TAZ85. Collectively, these studies suggest that maintenance of 
cell–cell junctions is important for mammalian Hippo pathway function. 

Recent studies shed some light into the mechanisms of YAP/TAZ 
regulation by cell–cell contact. First, a tight-junction protein complex, 
composed of the AMOT family proteins, PALS1, PATJ/MPDZ and Lin7, 
was found to interact with YAP and TAZ82–85. This interaction inhibits 
YAP and TAZ by promoting their localization to tight junctions and 
their phosphorylation by the Hippo pathway. In addition, α-catenin was 
shown to interact with YAP125,126, possibly through a 14-3-3 protein, in 
a phosphorylation-dependent manner126. This interaction may prevent 
YAP dephosphorylation by PP2A and results in YAP inhibition126. Thus, 
it is possible that the tight junction and adherens junction are critically 
important for relaying cell contact signals to the Hippo pathway. Such a 
hypothesis needs to be further investigated.

The Hippo pathway in tissue regeneration, and stem cell self-
renewal and expansion
The Hippo pathway was initially thought to limit organ size by inhib-
iting proliferation and promoting apoptosis16–20. However, emerging 
evidence suggests that the Hippo pathway may also regulate stem cell 
and progenitor cell self-renewal and expansion. For instance, YAP and 
TAZ regulate embryonic stem cell self-renewal in response to TGFβ/
BMP (transforming growth factor beta/bone morphogenetic protein) 
signalling104,110. In addition, YAP is inactivated during mouse embryonic 
stem cell differentiation and activated in induced pluripotent stem (iPS) 
cells5. YAP knockdown in mouse embryonic stem cells leads to loss of 
pluripotency, whereas ectopic expression of YAP prevents embryonic 
stem cell differentiation5. 

Additionally, the Hippo pathway also regulates tissue-specific pro-
genitor cells. YAP expression is generally restricted to the progenitor 
cells in normal mouse intestines, and transgenic expression of YAP 
in mouse intestines causes a marked expansion of the progenitor cell 
compartment12. Activation of YAP–TEAD also results in the expansion 
of neural progenitor cells in a chicken neural tube model13. Similarly, 
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YAP expression expands basal epidermal progenitors in mouse skin 
and inhibits their terminal differentiation127. In contrast, conditional 
knockout of YAP or knock-in of a TEAD-binding-deficient YAP mutant 
in mouse skin leads to decreased proliferation of basal cells, thinner 
epidermis and failure of skin expansion126. Consistently, adult liver 
stem cells known as oval cells accumulate in Mst1/2-, Sav1- and Mer- 
knockout mice liver70–73. It should be noted that these genetic manipu-
lations are applied at the whole organ level and not specifically to the 
progenitor cell compartment. However, the contribution of progenitor 
cell expansion in YAP-induced organ overgrowth is likely to be tissue-
dependent. For instance, overgrown hearts induced by Sav1 knockout 
showed excessive proliferation in cardiomyocytes but normal prolifera-
tion level of cardiac progenitors113. In addition, in certain cancers, such 
as a subtype of medulloblastomas, YAP expression is highly elevated in 
the perivascular cancer stem cell compartment128.

The Hippo pathway was recently shown to be involved in tissue regen-
eration. In the Drosophila midgut, Yki expression is largely restricted 
to intestinal stem cells (ISC)10. Under resting conditions, Yki is mostly 
localized to the cytoplasm and seems to be inactive10. In contrast, Yki 
displays increased nuclear localization and reporter activity, and has an 
important and cell-autonomous role in ISC proliferation in response to 
injury9,10. Interestingly, the Hippo pathway also has a non-cell-auton-
omous function during regeneration8,9,11. In response to damage, the 
Hippo pathway is inactivated in enterocytes, a differentiated cell type 
in the Drosophila midgut, resulting in Yki activation and subsequent 
expression of Upd1/2/3 (refs 8,9,11), as well as EGFR ligands11. This 
results in increased ISC proliferation in a non-cell-autonomous manner. 
Yki activation in enterocytes and in wing discs (where Yki also plays a 
role in regeneration6) seems to involve JNK signalling8,129.

In mammals, there is also evidence for a role of YAP in tissue regenera-
tion. Intestinal damage markedly induces YAP expression, and loss of 
YAP severely impairs dextran sodium sulfate-induced intestinal regen-
eration7. In the mouse liver, Yap knockout causes a defect in bile duct 
development69. Interestingly, most adult mouse biliary ductal epithelial 
cells express Sox9 and these cells make a significant contribution to liver 
regeneration after injury as shown by lineage tracing130. It remains to be 
determined whether ablation of YAP also results in compromised liver 
regeneration, and more importantly, whether the Hippo pathway activity 
is regulated during regeneration in mammals.

Conclusions and perspectives
Extensive studies in the past decade have elucidated the importance 
of the Hippo pathway in organ size control and regeneration in both 
Drosophila and mammals. Several mechanisms have been proposed, 
and it is clear that cell adhesion and polarity complexes play a key role 
in Hippo pathway regulation. YAP and Yki may promote organ size 
and regeneration by inducing stem cell and progenitor cell proliferation 
through both cell-autonomous and non-cell-autonomous mechanisms 
(Fig. 3a). In addition, inactivation of the Hippo pathway may block cell-
cycle exit, leading to hyperplasia and differentiation defects53 (Fig. 3b). 
The Hippo pathway can also inhibit proliferation and promote apoptosis 
in non-stem cells/non-progenitor cell types (Fig. 3c). Lastly, an imbal-
ance of Hippo pathway activity in neighbouring cells may induce cell 
competition through differential expression of dMyc in Drosophila98,99 
(Fig.  3d). How these mechanisms fit into organ size regulation and 
regeneration in vivo is yet to be determined. 

Despite these insights into the critical role of this pathway in stem 
cell expansion and tissue regeneration, many important questions await 
answers. These include the role and mechanism of cell polarity and cell 
adhesion proteins in sensing organ size to regulate the Hippo pathway 
and the position of the Hippo pathway in the known signalling networks 
regulating cell proliferation, apoptosis and stem cell function. In addi-
tion, the mechanism by which upstream regulators of the Hippo pathway 
are integrated to initiate or terminate signalling is not yet fully under-
stood. Importantly, Hippo pathway dysregulation in cancer remains to 
be fully elucidated. The Hippo–YAP pathway holds great promise as a 
target in cancer therapy and regenerative medicine. Insights into the 
upstream regulators and downstream targets of this pathway, and their 
mechanism of regulation, are crucial in translating our basic knowledge 
of this pathway into therapeutic designs. 
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